Fog harvesting from cooling towers using metal mesh: Effects of aerodynamic, deposition, and drainage efficiencies

Author:

Ghosh Ritwick12,Ganguly Ranjan2ORCID

Affiliation:

1. Operation & Maintenance Department, NTPC Limited, Farakka, India

2. Department of Power Engineering, Jadavpur University, Kolkata, India

Abstract

Fog harvesting is recognized as an important alternate source of fresh water. Industrial fog can supplement water for industrial requirement. Collection of fog (drift droplets) from cooling tower plumes is a viable mode of industrial fog harvesting. The present study delves deeper into the findings of our earlier pilot investigation, on cooling tower fog harvesting and unravels how the collection efficiency depends on interaction of the mesh with the oncoming flow and the deposited fog droplets. Herein, we quantify the fog collection and explain the rationale of the individual contributions of aerodynamic, deposition, and drainage efficiencies on the overall collection efficiency. The effect of the mesh orientations and the tangential velocity component of the cooling tower plume (arising out of the cooling tower-fan rotation) are considered. Aerodynamic efficiency of the mesh and pressure drop across is estimated through computational fluid dynamic analysis. Also, an analysis of the force interaction between the mesh wires, deposited droplet, and the fog stream is carried out to identify the salient deterring factors like re-entrainment, clogging, and premature dripping of collected water droplets, based on which the regime of collection is mapped. The best collection configuration is found at an inclination of 15° with the vertical, with an overall collection efficiency of about 16%. The best configuration would allow recovery of re-usable fresh water at a nominal energy penalty of ∼3.9 kWh/m3. Our results offer the design bases for developing full-scale fog harvesting setups for industrial cooling towers.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3