Numerical analysis of a Pelton bucket free surface sheet flow and dynamic performance affected by operating head

Author:

Zeng Chongji1,Xiao Yexiang1,Wang Zhengwei1,Zhang Jin1,Luo Yongyao1

Affiliation:

1. State Key Laboratory of Hydroscience and Engineering & Department of Thermal Engineering, Tsinghua University, Beijing, China

Abstract

The present paper aims to find out the influence of operating head on the rotating bucket free surface sheet flow and hydrodynamics performance for a Pelton turbine. Three-dimensional unsteady air-water two-phase flow simulations in the rotating buckets were performed by adopting the shear stress transport curvature correction turbulence model and homogenous model. The sensitivities of the unsteady simulation results to moving mesh resolution and computational fluid dynamics solver time-step have been evaluated to discuss the effect of Courant–Friedrichs–Lewy conditions on the two-phase flow simulation. The accuracy of the numerical predicted flow pattern and the hydrodynamic performance results are reasonable when compared with the experimental data. The simulation results indicate that the remaining kinetic energy carried by the outflow under the nondesigned water head is the main reason for the efficiency loss in the Pelton turbine. Under low water head conditions, jet distortion caused by the Coanda effect and flow interference will lead to more severe efficiency deterioration.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3