Utilizing artificial intelligence to develop an advanced compressor airfoil family for industrial, aero-derivative, and heavy-duty gas turbines

Author:

Shahrabi Farahani Alireza1ORCID,Mohammadi Esmaeil2,Alizadeh Mohammad3ORCID

Affiliation:

1. Department of Mechanical Engineering, Amirkabir University of Technology, Tehran, Iran

2. Department of Aerospace Engineering, Amirkabir University of Technology, Tehran, Iran

3. School of Mechanical Engineering, College of Engineering, University of Tehran, Tehran, Iran

Abstract

This paper describes the procedure for developing a new airfoil family. This airfoil family applies to heavy-duty, industrial, and aero-derivative gas turbine compressors ranging from subsonic to transonic flow regimes. The airfoil family is generated by filling a database with optimized airfoil geometries. This database is structured in six dimensions, called design space parameters, including inlet Mach number, inlet flow angle, outlet flow angle, axial velocity density ratio, maximum thickness to chord ratio, and solidity. This six-dimensional space includes all compressor blades used in stationary gas turbine compressors. Each set of these design space parameters is related to an optimal geometry produced by the optimization system. The optimization system includes a parametrized airfoil generator, an accurate, fast blade-to-blade flow solver, and an evolutionary optimization algorithm. Airfoils of different stationary gas turbine compressor types are investigated to cover the required design space. Four hundred thirty airfoils, denoted as reference airfoils, are used to define design space borders. Comparing the newly optimized airfoils with reference airfoils revealed superior performance throughout the entire design space. They incorporate these optimized airfoils into a surrogate model, resulting in a fast, optimized airfoil generator (airfoil family). The transonic rotor of the existing multistage compressor has been redesigned according to the developed airfoil family. 3D computational fluid dynamics showed a 2% efficiency improvement for optimized blade row over the original design. Integrating this airfoil family and a streamline curvature code as part of a compressor design system is the main application of this advanced airfoil family.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3