Combustion of a hydrogen jet normal to multiple pairs of opposing methane–air mixtures

Author:

Hamed AM1,Hussin AE1,Kamal MM1,Elbaz AR2

Affiliation:

1. Department of Mechanical Power Engineering, Faculty of Engineering, Ain Shams University, Cairo, Egypt

2. The British University, Cairo, Egypt

Abstract

The combustion performance of a cylindrical burner accommodating up to six multiple pairs of opposing methane–air mixtures with a cross-flow of hydrogen was addressed. The cross-flow initially duplicated the stagnation impact and enriched the vortical structures. Aided by the resulting flow strain, the transport of heat and active species from the hydrogen oxidation zone to the methane reaction zones accelerated the combustion across the opposing premixed flames and reduced the peak temperature across the outer diffusion flame. Increasing the cross-flow/opposing jets’ velocity ratio to 0.89 merged the two stagnation centers and maximized the shearing stress. By the slight increase in the velocity ratio to 1.07, the H and OH pools provided for methane combustion became closer to the ports such that a hydrogen/methane mass percent of 10.3% extended the stoichiometric blowout velocity from 28.3 to 35.7 m/s. Since the turbulent kinetic energy thus increased to 8.4 m2/s2, the firing intensity reached values as high as 48.2 MW/m3. Not only was there a reduction in the residence time for NOx formation, but also the blowout velocity relative gain overrode the relative increase in the NOx formation rates such that the NOx emission index decreased to 17 g/MWhr. By the excessive increase in velocity ratio, the vortical structures shrank such that the NOx exponential increase became dominant above 21 ppm. With fuel-lean mixtures, the hydrogen was partially combusted by the excess air from the opposing flames but the blowout velocity decreased to 13.1 m/s at Φ = 0.50. The hydrogen flame NOx emissions decreased by providing the excess air at larger jets’ diameter/separation ratios, thus reducing the residence times for thermal NOx formation and simultaneously interrupting the prompt NOx formation. At the lean operational limit, tripling the number of opposing jets decreased the hydrogen flame length by 54% such that the NOx emissions decreased by 38.4%.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3