Development of an intelligent flame monitoring system for steel reheating burners

Author:

Thai Shee Meng1,Wilcox Steven J1,Tan Chee Keong1,Ward John1,Andrews Graham2

Affiliation:

1. Department of Engineering, University of Glamorgan, UK

2. Tata Steel Swinden Technology Centre, UK

Abstract

This article describes the development of a system to indirectly monitor the combustion characteristics of individual burners based on measurement and analysis of the signals detected from photodiodes detecting flame radiation signals. A series of experiments were conducted on a 500 kW pilot-scale furnace and on two 4 MW industrial burners located in two steel reheating furnaces. The flame radiation signals were monitored using a lens that transmitted the flame radiation to ultraviolet, visible and infrared photodiodes through a trifurcated optical fibre. The experiments covered a wide range of burner operating conditions including; variations in the burner load and excess air levels and simulations of burner imbalance. The relationships between the dynamic flame radiation signals and the burner operating parameters and conditions were made off-line using neural network models. The present work indicates that the measurement of flame radiation characteristics, coupled with neural networks, provides a promising means of monitoring and adjusting burner performance.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3