Assessment of the numerical and experimental performance of screw tidal turbines

Author:

Rahmani Hamid1,Biglari Mojtaba1ORCID,Valipour Mohammad Sadegh1,Lari Kamran2

Affiliation:

1. Department of Mechanical Engineering, Semnan University, Semnan, Iran

2. Department of Physical Oceanography, Islamic Azad University, Tehran, Iran

Abstract

This study was aimed at the numerical and experimental modeling of water flow during collision between water and vertical screw turbine blades with different cross sections (i.e. Darrieus, spoon, and airfoil). ANSYS Fluent was used to model water flow under tidal currents in a flume, and mesh independence was ensured after the selection of appropriate geometry. The collision problem was then solved in the transient state, and results on the momentum and power generated by different inlet velocities and different blade cross sections were analyzed. The findings showed that torque and turbine power increased with increasing inlet velocity. Subsequently, a turbine was experimentally created, with cross sections drawn in the numerical model and tested under the same conditions as that imposed on the model. Installing a multimeter on the turbine enabled the generation of turbine power in different dimensions. The resultant power increased with rising turbine dimensions. After obtaining the numerical and experimental results, the value of the output power of the turbine was validated. The validation indicated a 7% difference in output power between the numerical and experimental results, indicating acceptable accuracy.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3