Influence of tip leakage flow and inlet distortion flow on a mixed-flow pump with different tip clearances within the stall condition

Author:

Ji Leilei1ORCID,Li Wei12ORCID,Shi Weidong3

Affiliation:

1. Research Center of Fluid Machinery Engineering and Technology, Jiangsu University, Zhenjiang, China

2. Institute of Fluid Engineering Equipment Technology, Jiangsu University, Zhenjiang, China

3. College of Mechanical Engineering, Nantong University, Nantong, China

Abstract

In order to investigate the effect of impeller tip clearance on internal flow fields and the rotating stall inception impacted by tip leakage vortex and inlet unsteady flow in a mixed-flow pump, mixed-flow pump models with tip clearances of 0.5 mm, 0.8 mm, and 1.1 mm were numerically calculated, and then the energy performance curves and internal flow structures were obtained and compared. The results show that the pump efficiency and the internal flow fields of numerical calculation are in good agreement with experimental results at design flow rate and near-stall condition. A portion of the positive slope segment appears in the energy performance curves under different tip clearances. The lowest head of the mixed-flow pump in the positive slope region decreases with the increase of the tip clearance while the highest head shows an opposite situation indicating that mixed-flow pumps are easier to stall under small tip clearance. At the design flow rate condition, the tip leakage vortex is relatively stable under different tip clearances and appears as a “snail shell” shape, whereas in rotating stall conditions, the “snail shell” shape disappear and the tip leakage flow on blade front forms a “flat” vortex structure. The inlet swirl flow not only affects the tip leakage flow in rotating stall conditions under different tip clearances, but also blocks the fluid from the inlet pipe. Under the circumstance of the same tip clearance, the main frequency amplitude of pressure pulsation coefficient gradually shifts away from blade passing frequency (96.67 Hz) to the axial frequency (24.17 Hz) when the pump operates in the stall condition.

Funder

PAPD, Six Talents Peak Project of Jiangsu Province

National Natural Science Foundation of China

National Key R&D Program Project

Key R&D Program Project in Jiangsu Province

Graduate Research and Innovation Project of Jiangsu Province

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3