Computational investigation of multi-phase flow effects on the performance of the steam turbine exhaust hood

Author:

Sadasivan Sreeja1ORCID,Kumar Arumugam Senthil2,Aggarwal Mahesh C3

Affiliation:

1. School of Mechanical Engineering, Vellore Institute of Technology, Vellore, India

2. CO2 Research and Green Technologies Centre, Vellore Institute of Technology, Vellore, India

3. Department of Mechanical Engineering, Gannon University, Erie, USA

Abstract

In this research work, a computational modeling of multi-phase flow through an asymmetric exhaust hood is presented. The three-dimensional Navier–Stokes equations along with the standard [Formula: see text] turbulent model and the Eulerian–Eulerian multi-phase equations were solved. The coupling of the last stage turbine blades and the exhaust hood has been carried out using the actuator disc model, which is less computationally demanding. The finite volume-based commercial computational fluid dynamics solver, ANSYS FLUENT, is used for the present numerical simulations. The effects of wetness on the flow structure and the pressure recovery capacity of a steam turbine exhaust hood have been investigated. One of the salient findings is that the pressure recovery capacity of a steam turbine exhaust hood enhances due to wetness effects. Wetness-induced turbulence damping is noted to be playing a crucial role in the enhancement of pressure recovery capacity of an exhaust hood.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3