Numerical investigation of H2/Air fueled micro combustion characteristics with trapezoidal ribs for micro thermophotovoltaic applications: Effect of rib height

Author:

Lachraf Abdelbasset1ORCID,Si Ameur Mohamed1ORCID

Affiliation:

1. Department of Mechanical Engineering, Industrial Energy Systems Laboratory, University of Batna 2, Fesdis, Algeria

Abstract

In this numerical study, the impact of equidistant trapezoidal ribs on the characteristics of premixed H2-air micro-combustion was investigated, with a specific focus on the rib height. The study comprehensively examined flame structure, flame front position, flame speed, and combustion efficiency. A comparative analysis was performed between a backward-facing step micro combustor (MCSD) and micro combustors with varying rib heights: MCRD1 (0.5 mm), MCRD2 (0.6 mm), and MCRD3 (0.7 mm). The incorporation of trapezoidal ribs resulted in the creation of elongated and evenly distributed recirculation zones, significantly enhancing mixing and promoting flame stability, particularly at higher rib heights. The recirculation zones played a critical role in influencing the chemical reaction rate and the species distribution, leading to higher flame speed and greater combustion intensity. The findings highlight the outcomes of incorporating ribs in terms of combustion efficiency. The combustion efficiency values for MCRD1, MCRD2, and MCRD3 were recorded as 96.95%, 96.75%, and 96.61%, respectively, while the MCSD had a combustion efficiency of 97.14%. Hence, the recommended range of rib height is considered advantageous in ensuring an optimal balance between improved flame stabilization and maintaining a satisfactory level of combustion efficiency. The findings provide valuable insights for optimizing micro-thermophotovoltaic systems.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3