A study on cycle fuel injection quantity variation for a diesel engine combination electronic unit pump system

Author:

Fan Liyun1,Tian Bingqi1,Yao Chong1,Li Wenhui1,Ma Xiuzhen1

Affiliation:

1. College of Power and Energy Engineering, Harbin Engineering University, China

Abstract

A new fuel injection equipment, combination electronic unit pump was developed to make diesel engines compliant with China’s new laws on emissions. Combination electronic unit pump system is a complex assembly constituting of mechanical, hydraulic, and electrical magnetic components. Combination electronic unit pump system includes several electronic unit pumps and mechanical injectors. Cycle fuel injection quantity variation influences product performance and defines its quality of qualification. A numerical model of the combination electronic unit pump system was developed in AMESim environment to create a design tool for engine application and system optimization. Simulated results obtained from this numerical model were validated through experimental tests conducted under the conditions same as numerical model. The results are quite encouraging and consistent with model predictions. Influences of parameters, including variations in supply fuel pressure, cam velocity, plunger-matching clearance, peak control current, anchor residual clearance, valve-matching clearance, valve lift, injector opening pressure, nozzle-flow coefficient, and injector needle lift, on cycle fuel injection quantity variation were analyzed in AMESim simulation environment and verified through experiments. The quantitative percentage indexes of the influence of injector characteristic, valve characteristic, plunger characteristic, and low-pressure supply fuel characteristic parameters on cycle fuel injection quantity variation range from 44% to 34%, 20% to 35%, 32% to 19%, and 4% to 12%, respectively, at a cam rotational speed of 500–1300 r/min.

Publisher

SAGE Publications

Subject

Mechanical Engineering,Energy Engineering and Power Technology

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Performance analysis of a novel oil-free rotary compressor;Proceedings of the Institution of Mechanical Engineers, Part A: Journal of Power and Energy;2018-02-23

2. A STUDY OF FUEL TEMPERATURE DYNAMIC CHARACTERISTICS FOR DIESEL ENGINE COMBINATION ELECTRONIC UNIT PUMP SYSTEM;J MAR SCI TECH-TAIW;2017

3. Study of the fluctuation in the cycle fuel injection quantity in a common-rail system for a heavy-duty vehicle diesel engine;Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering;2014-10-16

4. Analysis of Pressure Wave Model Predictions Considering Diesel Fuel Properties;Applied Mechanics and Materials;2014-10

5. Study of Effect of Diesel Fuel Properties on Pressure Wave Profile;Applied Mechanics and Materials;2014-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3