Numerical investigation of CH4/H2/air micro-mixing combustion flow in a micro gas turbine combustor with different head-end structures

Author:

Wu Ruibing1ORCID,Zeng Zhuoxiong12ORCID,Liu Hong3ORCID,Guo Kaifang4

Affiliation:

1. College of Energy and Mechanical Engineering, Shanghai University of Electric Power, Shanghai, China

2. Shanghai Non-carbon energy conversion and utilization institute, Shanghai, China

3. School of Chemical Engineering and Technology, Xi’an Jiaotong University, 710049, Xi’an, China

4. School of Aeronautics and Astronautics, Dalian University of Technology, 116024, Dalian, China

Abstract

In order to investigate the premixed combustion characteristics of CH4/H2/air in a micro-mixing combustor, the effects of different micro-mixing head-ends (HE1, HE2, HE3) and hydrogen mixing ratios on the temperature distribution, heat transfer process, emission characteristic, flames shape are analyzed. The results show that compared with swirl head-end combustion, the micro-mixing combustion performance is better. Among the three head-ends, HE3 has the best combustion characteristics and stable flames. The temperature distribution in the high-temperature zone is uniform, and low-temperature zone is concentrated near the jet, which can suppress the flashback. The velocity and temperature gradient near the central axis of jet streams show a strong synergistic effect. The flames are plume shaped and flames stability is mainly influenced by the H2 combustion process. Increasing the jet diameter, decreasing the jet spacing and increasing the hydrogen mixing ratio all contribute to the flames stability, but these three methods can stabilize the flames by affecting fluid Reynolds number, interaction between small flames and combustion rate, respectively. Moreover, small jet diameter and high hydrogen mixing ratio can reduce OTDF, which contributes to improve outlet temperature uniformity.

Funder

Capacity Building Projects in Local Universities of Science and Technology Commission of Shanghai Municipality

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3