Antiviral Potency Analysis and Functional Comparison of Consensus Interferon, Interferon-α2a and Pegylated Interferon-α2b against Hepatitis C virus Infection

Author:

Erickson Andrea K1,Seiwert Scott2,Gale Michael3

Affiliation:

1. Department of Microbiology, University of Texas Southwestern Medical Center, Dallas, TX, USA

2. InterMune Inc., Brisbane, CA, USA

3. Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA

Abstract

Background Current treatments for chronic hepatitis C virus (HCV) employing pegylated interferon (PEG-IFN) plus ribavirin are successful in approximately 50% of patients. Consensus IFN (CIFN) is a recombinant type I IFN that has demonstrated efficacy where conventional therapy has failed. We evaluated the host cell antiviral response and anti-HCV actions induced by IFN-α2a, PEG-IFN-α2b or CIFN on cultured immortalized human hepatocytes, Huh7 human hepatoma cells and Huh7 cells that harboured genetically distinct HCV RNA replicons or were infected with HCV 2a. Methods Cultured cells were treated with each IFN at relevant dosing based upon the pharmacological attainable in vivo serum maximum IFN concentrations. Gene expression and antiviral properties were measured using protein, RNA and virus quantification assays. Results CIFN treatment maximally triggered Janus kinase signal transducer and activator of transcription signalling in association with enhanced IFN-stimulated gene (ISG) expression. Increased antiviral potency of CIFN was associated with enhancement of IFN-induced blockade upon viral protein synthesis, protection of the cellular IFN promoter stimulator-1 (IPS-1) protein from HCV proteolysis and reduced replication of an IFN-resistant HCV replicon variant. Microarray analyses revealed that CIFN treatment induced a distinct pattern of ISG expression in cultured hepatocytes compared with other IFNs. Conclusions CIFN exhibits increased anti-HCV potency over IFN-α2a and PEG-IFN through maximal and distinct induction of ISG expression and enhanced intracellular innate antiviral response, while protecting IPS-1 from HCV proteolysis. CIFN might offer a treatment regimen imparting translational control programmes and restoration of the retinoic acid-inducible gene-1/IPS-1 pathway and could be considered for previous treatment failures.

Publisher

SAGE Publications

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3