Virological Effects of Isis 14803, An Antisense Oligonucleotide Inhibitor of Hepatitis C Virus (HCV) Internal Ribosome Entry Site (IRES), on HCV Ires in Chronic Hepatitis C Patients and Examination of the Potential Role of Primary and Secondary HCV Resistance in the Outcome of Treatment

Author:

Soler Muriel1,McHutchison John G2,Kwoh T Jesse3,Dorr F Andrew3,Pawlotsky Jean-Michel1

Affiliation:

1. Department of Virology, INSERM U635, Henri Mondor Hospital, University of Paris XII, Créteil, France

2. Duke Clinical Research Institute, Duke University Clinical Center, Durham, NC, USA

3. Isis Pharmaceuticals, Carlsbad, Calif., USA

Abstract

Antisense oligonucleotides represent a promising class of antiviral agents. ISIS 14803 is a 20-unit phosphorothioate oligodeoxynucleotide that inhibited hepatitis C virus (HCV) replication and protein expression in cell culture and mouse models. A Phase I dose-escalation clinical study of ISIS 14803 was performed in 24 patients with HCV genotype 1 chronic hepatitis C. The patients received 0.5, 1.0, 2.0 or 3.0 mg/kg of ISIS 14803 for 4 weeks. Two of them receiving 2.0 mg/kg, experienced a significant (>1.0 log10) viral load reduction and nine other patients experienced minor (<1.0 log10) viral load reductions that were difficult to definitively distinguish from assay or patient variations. The aims of this study were to examine the effect of ISIS 14803 on its target site and neighbouring region quasispecies evolution, and to determine whether primary and secondary HCV resistance contributed to the observed virological response rate. The HCV internal ribosome entry site (IRES), including the ISIS 14803 target site in virus specimens collected from patients at baseline and end-of-treatment, was sequenced. An extensive IRES quasispecies analysis was performed in 10 of the patients at various time points before, during and after ISIS 14803 treatment. A significant IRES genetic evolution was found in three out of 10 patients through quasispecies analysis suggesting that treatment with ISIS 14803, a drug designed to bind to HCV RNA, exerted a selective pressure on HCV IRES. However, no mutations in the ISIS 14803 target site, which would inhibit binding of the oligonucleotide to HCV RNA, were detected before (primary resistance) or after treatment (secondary resistance) with the oligonucleotide. Furthermore, no obvious nucleotide changes in the surrounding IRES region that might possibly affect oligonucleotide binding were detected.

Publisher

SAGE Publications

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3