Advances in the Development of Ribozymes and Antisense Oligodeoxynucleotides as Antiviral Agents for Human Papillomaviruses

Author:

Alvarez-Salas Luis Maret1,Benítez-Hess Maria Luisa1,DiPaolo Joseph A2

Affiliation:

1. Laboratory of Gene Therapy, Department of Genetics and Molecular Biology, CINVESTAV, Mexico

2. Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Md., USA

Abstract

Urogenital human papillomavirus (HPV) infections are the most common viral sexually transmitted disease in women. On a worldwide basis cervical cancer is the second most prevalent cancer of women. Although HPV infection is not sufficient to induce cancer, the causal relation between high-risk HPV infection and cervical cancer is well established. Over 99% of cervical cancers are positive for high-risk HPV. Therefore, there is a need for newer approaches to treat HPV infection. Two novel approaches for inactivating gene expression involve ribozymes and oligonucleotides. Methods for identification of target genes involved in neoplastic transformation and tumour growth have been established, and these will lead to therapeutic approaches without any damage to normal cellular RNA molecules, which is often associated with conventional therapeutics. Ribozymes and oligonucleotides represent rational antiviral approaches for inhibiting the growth of cervical lesions and carcinomas by interfering with E6/E7 RNA production. The E6 and E7 genes of high-risk HPVs cooperate to immortalize primary epithelial cells and because they are found in cervical cancer are considered the hallmark of cervical cancer. The use and modification of ribozymes and antisense oligodeoxynucleotides can inhibit the growth of HPV-16 and HPV-18 immortalized cells, and tumour cells by eliminating E6/E7 transcript. Hammerhead and hairpin ribozymes have been widely studied because of their potential use for gene therapy and their place as therapeutic tools for cervical cancer is being evaluated. Although antiviral ribozymes and anti-sense molecules have been effective as in vitro or in vivo inhibitors of high-risk HPV-positive cells, none is currently in clinical trial. There are, however, a number of other antisense therapies in Phase I–III clinical trial for several oncogenes.

Publisher

SAGE Publications

Subject

Infectious Diseases,Pharmacology (medical),Pharmacology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3