Sustainable biodiesel production from Ceiba penandra, Mahua longifolia, and Azadirachta indica using CaO-TiO2 nano catalyst

Author:

Sujin P.1ORCID,Diaz P. M.2,Kings Ajith J.3ORCID,Miriam L. R. Monisha4

Affiliation:

1. Department of Mechanical Engineering, Maria College of Engineering and Technology, Nagercoil, India

2. Department of Mechanical Engineering, Ponjesly College of Engineering, Nagercoil, India

3. Department of Mechanical Engineering, St Xavier’s Catholic College of Engineering, Nagercoil, India

4. Department of Biotechnology, Udaya School of Engineering, Nagercoil, India

Abstract

Rapid industrialization and population expansion increased the demand for petroleum-based fuels, resulting in price hike and creates serious environmental issues. Biodiesel, a clean, renewable and long-lasting alternative and for large scale production needs readily available and sustainable feedstocks. Edible and non-edible plants are abundant in Southern India, particularly Ceiba penandra (CP), Mahua longifolia (ML), and Azadirachta indica (AI), which were employed in this study in combination. An efficient heterogeneous nano-catalyst CaO-TiO2 was synthesized and employed in the transesterification process due to its recoverability and insensitivity to FFA. The catalyst was subjected to characterize by FTIR, XRD and SEM with EDX mapping. Response surface approach is engaged in this study for cost-effective production. More than 95% biodiesel yield was achieved for Ceiba penandra oil (CPO), Mahua longifolia oil (MLO), Azadirachta indica oil (AIO) and their mixture (MIO) by optimization of significant reaction parameters and the best combination was obtained as methanol oil ratio (0.32, 0.46, 0.34 and 0.42 v/v), catalyst usage (5, 6.5, 6 and 4 wt.%), mixing intensity (750, 840, 700 and 540 rpm) and duration (80, 105, 85 and 85 min) respectively with constant temperature of 70°C. Fatty acid profile was characterized by chromatograph also established the properties by ASTM and EN guidelines to confirm its compatibility in the IC engine.

Publisher

SAGE Publications

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3