Synthesis and effect of metal–organic frame works on CO2 adsorption capacity at various pressures: A contemplating review

Author:

Rehman Ayesha1,Farrukh Sarah1,Hussain Arshad1,Pervaiz Erum1

Affiliation:

1. Department of Chemical Engineering, School of Chemical and Materials Engineering, National University of Sciences & Technology, Islamabad, Pakistan

Abstract

The most important environmental challenge that the world is facing today is the control of the quantity of CO2 in the atmosphere, because it causes global warming. Increase in the global temperature results in greenhouse gas emission, interruption of the volcanic activity, and climatic changes. The alarming rise of the CO2 level impels to take some serious action to control these climatic changes. Various techniques are being utilized to capture CO2. However, chemical absorption and adsorption are supposed to be the most suitable techniques for post-combustion CO2 capture, but the main focus is on adsorption. The aim of this study is to provide a brief overview on the CO2 adsorption by a novel class of adsorbents called the metal–organic framework. The metal–organic framework is a porous material having high surface area with high CO2 adsorption capacity. The metal–organic frameworks possess dynamic structure and have large capacity to adsorb CO2 at either low pressure or high pressure due to its cavity size and surface area. Adsorption of CO2 in the metal–organic framework at various pressures depends upon pore volume and heat of adsorption correspondingly. In this review, different synthesis methods of the metal–organic framework such as slow evaporation, solvo thermal, mechanochemical, electrochemical, sonochemical, and microwave-assisted synthesis are briefly described as the structure of the metal–organic frameworks are mostly dependent upon synthesis techniques. In addition to this, different strategies are discussed to increase the CO2 adsorption capacity in the metal organic-framework. [Formula: see text]

Publisher

SAGE Publications

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3