Sizing and modelling of stand-alone photovoltaic water pumping system for irrigation

Author:

Raghuwanshi Santosh Singh1,Khare Vikas1

Affiliation:

1. Electrical Engineering Department, Medi-Caps University, Indore, India

Abstract

The aim of this study is to calculate the size of the stand-alone solar photovoltaic generator and water pumping system for irrigation. In addition solar photovoltaic generator connects voltage source inverter to vector controlled induction motor-pump system. Perturb and observe method is used for harvesting maximum power of photovoltaic generator. The smooth-starting of motor-pump drive is achieved through the maximum power point tracking method. The operational performance of the solar-water-pump system is kept at 60 m head and supply daily average 35,000 L/day. In this paper result is validated by the comparison fuzzy logic controller and proportional-integral controller, driven by solar-motor-pump system. The results confirmed that fuzzy logic controller based pumping system gives more accurate results as compared to proportional-integral controller based motor-pump system. The fuzzy logic controller increases the accuracy and efficiency of the solar-water-pump system.

Publisher

SAGE Publications

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

Cited by 14 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3