Design of total water networks of multiple properties based on operator potential concepts and an iterative procedure

Author:

Zhang Lei1,Li Ai-Hong2,Jia Xue-Xiu3,Klemeš Jiří J3,Liu Zhi-Yong1

Affiliation:

1. School of Chemical Engineering, Hebei University of Technology, Tianjin, China

2. Department of Chemical Engineering, Chengde Petroleum College, Chengde, China

3. Sustainable Process Integration Laboratory, SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology-VUT Brno, Brno, Czech Republic

Abstract

The design of property-based total water networks by using the concepts of operator potential is investigated with an iterative approach. The precedence order of demands is identified with the operator potential values of demands. The internal sources to be regenerated are selected based on the values of operator potential of sources. A linear programming approach is used to determine the allocation of sources to demands. With the proposed method, the networks which meet both the requirements of demands and environmental regulations can be obtained. Two examples are studied to illustrate the proposed method. It is shown that the results obtained by this work are comparable to that obtained by mathematical programming method in the literature. For Example 1, flowrate of regenerated stream is reduced 28.5% compared to that in the literature results with almost the same freshwater consumption. In addition, the number of interconnections for this work is smaller than that of literature, which means that the design structure of this work is simpler. For Example 2, freshwater consumption is reduced by 4.29% with almost the same regeneration flowrate. However, the number of interconnections for this work is 24, which is higher than 23, that is the value of the literature result. Compared to graphical methods, the method proposed in this paper can handle the networks with more than three properties. Compared to mathematical programming methods, the proposed method has clear engineering meaning.

Funder

Czech Republic Operational Programme Research and Development, Education, Priority 1: Strengthening capacity for quality research has been acknowledged

Science Research Foundation of Hebei Education Department

Natural Science Foundation of Hebei Province

Publisher

SAGE Publications

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3