An overview of aerodynamic performance analysis of vertical axis wind turbines

Author:

Ahmad Muhammad1ORCID,Shahzad Aamer1,Qadri M. Nafees Mumtaz1

Affiliation:

1. Department of Aerospace Engineering, College of Aeronautical Engineering, National University of Sciences and Technology, Islamabad, Pakistan

Abstract

In this paper, an attempt has been made to highlight major developments of vertical axis wind turbines (VAWTs) in the last few decades. The effects of various design parameters such as airfoil, number of blades, solidity, aspect ratio, blade helicity, and overlap ratio have been critically analyzed. Wind energy is the most promising renewable, cost-effective, efficient, and accessible source for both domestic and commercial applications. Horizontal axis wind turbines are highly developed and are being used for medium-to-large scale power projects. VAWT are considered viable options for urban and semi-urban areas. These turbines have several characteristics, such as omnidirectional, power generation in weak and unstable winds, esthetically sound, safety, and low noise. Darrieus turbines with a fixed blade-type have starting problems at low wind speeds. Savonius turbines have good starting capability; however, their power coefficients are lower than other types of VAWT. To overcome the shortcomings of conventional wind turbines, an innovative engineering solution was sought in the design of hybrid VAWT. The analysis revealed that hybrid wind turbines have addressed the deficiencies to an extent; however, the overall performance is still less than that of conventional wind turbines. Several recommendations have been made based on state-of-the-art information from the perspective of future studies and acceptability. It was concluded that vast opportunities for wind turbine applications are available in urban areas; however, further academic research is required on critical aspects such as self-starting at low wind speeds, efficiency, structural reliability, design improvement for aerodynamic performance, and wind resource assessment.

Publisher

SAGE Publications

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3