Confirming the efficacy of a new arch-firing solution in safely strengthening low-NOx combustion within a large-scale furnace: Impact of the flue gas recirculation position in burners

Author:

Liu Sheng12,Kuang Min1ORCID,Cheng Shuting1,Wu Xiaoyang2,Ding Guozhu2

Affiliation:

1. Institute of Electromechanical and Energy Engineering, Ningbo University, Ningbo, China

2. China Coast Guard Academy, Ningbo, China

Abstract

To address the persistently high NO x production and the heightened overheating risk in the hopper of a 600-MWe, deep-air-staging, arch-fired boiler furnace (i.e., the reference furnace), a solution was devised with a staged arch-firing framework (SAF) and flue gas recirculation (FGR). This required establishing an appropriate position for the burner-FGR and confirming the viability of the SAF for the furnace. Comprehensive industrial-scale physical tests and computer simulations were conducted using the reference furnace. Subsequently, the furnace with SAF was examined with FGR introduced sequentially, first using a fuel-rich mixture, then using an inner secondary-air flow, and finally using an outer secondary-air flow (i.e., denoted in turn as FGR-FR, FGR-IS, and FGR-OS). Given this FGR-location order, the FGR’s functions about combustion degradation and NO inhibition weakened, resulting in increased NO x emissions and continuously decreasing burnout loss. Considering the satisfactory burnout levels across all three configurations, the FGR-FR configuration demonstrated the best reduction in NO x emissions, achieving NO x output of about 600 mg/m3 (O2 = 6%) and an unburnt combustible rate in fly ash of about 5%. Comparing the conditions before and after implementing the SAF indicated that the SAF enhanced combustion intensity and improved the utilisation of overfire air and hopper air, resulting in a further 33.3% reduction in NO x emissions without compromising burnout efficiency. Additionally, the SAF effectively mitigated the overheating risk in the hopper by significantly lowering local temperature levels by 400 K.

Funder

Natural Science Foundation of Ningbo Municipality

National Natural Science Foundation of China

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3