Enhanced honey badger optimization of performance analysis of evacuated tube heat pipe solar collector integrated with PCM storage unit

Author:

Ramesh C1ORCID,Vijayakumar M2,Kumaresan G3,Selvanayagam Benjamin Franklin4

Affiliation:

1. Department of Mechanical Engineering, KIT-Kalaignar Karunanidhi Institute of Technology, Coimbatore, Tamil Nadu, India

2. Department of Mechanical Engineering, PSN College of Engineering and Technology, Tirunelveli, Tamil Nadu, India

3. Department of Mechanical Engineering, Bannari Amman Institute of Technology, Sathyamangalam, Tamil Nadu, India

4. Department of Mechanical Engineering, Sri Ramakrishna Institute of Technology, Coimbatore, Tamil Nadu, India

Abstract

A hybrid method for improving the efficiency of heat pipe evacuated-tube solar-collector (HPETC) is proposed for incorporating the phase-change materials (PCMs) in both off-demand and regular operation. The proposed hybrid approach is called an improved honey badger algorithm (HBA). The crossover and mutation operator improves the honey badger's (HB) foraging habit. The proposed approach aims to generate hot air at various rates of airflow under incident and nonincident solar-radiation situations. The analysis is done on the effects of different energy-storage systems and the position of the heat pipe (HP). In a normal heat-pipe evacuated-tube solar collector, the HP is put within the glass tube that is closer to the upper-surface, and it is held in place through an aluminum fin. However, in the proposed method, the HP is rearranged in the tube's middle. In order to identify the PCM with the highest average-fin temperature, the temperatures of the area-weighted average-fin are measured and compared throughout the glass tubes under typical conditions. For maximizing the thermal-energy carrying capability, the average liquid fraction volume of PCMs is measured for a 24-h flow period. The average liquid-fraction volume of PCMs is continuously observed in stagnation mode till the glass tube reaches the maximal value. The structured mesh patch conforming method is used to invalidate the HPETC system's constituent parts, improving numerical stability and convergence. The proposed method efficiency is 0.43. The proposed method shows high efficiency compared with other existing methods.

Publisher

SAGE Publications

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3