Optimal sizing and optimization of financial cost for EVs using SPOA-RBFNN technique

Author:

Kannan P1ORCID,Sivakumar M2,Ruban Raja R3

Affiliation:

1. Department of Electrical and Electronics Engineering, Vivekanandha College of Engineering for Women, Tiruchengode, India

2. EE Section, Engineering Department, University of Technology and Applied Sciences - Nizwa, Sultanate of Oman

3. Department of Electrical and Electronics Engineering, Vivekanandha College of Technology for Women, Tiruchengode, India

Abstract

This study proposes a hybrid technique for optimal sizing and cost optimization of hybrid energy storage systems (HESS) integrated into electric vehicles (EVs). The proposed technique, SPOA-RBFNN, combines a student psychology-based optimization algorithm (SPOA) and a radial-basis function neural network (RBFNN). The study aims to minimize the overall cost of the HESS by evaluating two design variables: the super-capacitor (SC) and battery pack size. SPOA is employed to optimize the hybrid HESS design variables, ensuring efficient exploration of solution spaces. The RBFNN method is then used to predict the relationship between these design variables and the overall cost of the HESS in electric vehicles. The results show that the proposed technique is more effective than existing techniques, with an efficiency of 97.99039% compared to 82.137% for GA and 77.26589% for particle swarm optimization (PSO). This work offers a comprehensive and innovative approach to optimizing HESS sizing in EVs, connecting the gap between performance optimization and financial cost analysis.

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3