Optimization of Micro Gas Turbine Based Hybrid Systems for Remote Off-grid Communities

Author:

Basmadjian Nareg1,Yun Sean2,Hong Zekai2ORCID

Affiliation:

1. Research Assistant, Aerospace Research Center, National Research Council of Canada, Ottawa, Ontario, K1A 0R6, Canada

2. Senior Researcher, Aerospace Research Center, National Research Council of Canada, Ottawa, Ontario, K1A 0R6, Canada

Abstract

Inherent fuel flexibility of micro gas turbine (MGT) makes the engine a promising energy solution to remote Canadian communities that are not connected to the North American electricity grid, where bio-oils derived from locally available bio-mass may be utilized to meet local power and heat demands to reduce fossil fuel consumption. The switch to bio-oils enabled by MGTs reduces not only carbon footprints but also operating expenses due to high transportation costs of fossil fuels. However, MGT efficiencies are greatly reduced at partial loads. This work investigates the feasibility of addressing MGT efficiency drops at partial loads by incorporating MGT with a Battery Energy Storage System (BESS) to form a hybrid system so that the MGT can be operated at near full power at all times for better efficiencies. In this study, a daily power demand profile of a typical Canadian household is adopted for optimizing battery size and MGT operating strategies. By optimizing MGT daily start time and the engine's threshold partial load factor, the specific fuel consumption and battery size can be minimized for a specific number of households on a micro-grid supported by the MGT-based hybrid power system.

Funder

Office of Energy Research and Development

Publisher

SAGE Publications

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

Reference46 articles.

1. Conference Board of Canada. Power shift: electricity for Canada’s remote communities. Ottawa: The Conference Board of Canada, 2016, pp.1–65.

2. Progress in electrical energy storage system: A critical review

3. Residential peak electricity management. A storage and control systems application taking advantages of smart meters

4. A review on peak load shaving strategies

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3