Thermal augmentation in solar aircraft using tangent hyperbolic hybrid nanofluid: A solar energy application

Author:

Jamshed Wasim1ORCID

Affiliation:

1. Department of Mathematics, Capital University of Science & Technology (CUST), Pakistan

Abstract

The major source of heat from the sun is solar energy, with enormous use of photovoltaic technology, solar power plates, photovoltaic lights and pumping solar water. This time is about the analysis of solar radiation and how the efficiency of solar aircraft may be improved by using solar radiation and nanotechnology. The study is intended to develop analyses of solar aircraft hybrid nanofluid transfer via parabolic trough surface collector solar wings. Solar radiative flow was named the heat source. The heat transfer efficiency of the wings is evaluated for various phenomena such as a slanted magnetic field, Joule heating, play heat and thermal radiative flow. The entropy production study was carried out in the instance of the tangent hyperbolic fluid. The modelled energy and momentum formulas were controlled with the well-established Keller box numerical technique. This work consists of ethylene glycol standard fluid with two differing types of nanosolid particles copper and silver. Different control factors for velocities, shear stress and temperature are addressed and shown in the figures and tables as well as surface friction and heat transport rate. In terms of thermal transfer, the efficacy of the aviation wings with thermal radiation amplification and changeable thermal conduction parameters is enhanced. Hybrid nanofluid is an ideal source of heat transmission compared to conventional nanofluids. Silver–copper/ethylene glycol thermal efficiency is reduced between 2.6% and 4.4% than copper–ethylene glycol nanofluid.

Publisher

SAGE Publications

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3