Performance and CO2 mitigation analysis of a solar greenhouse dryer for coconut drying

Author:

Ayyappan S1

Affiliation:

1. Department of Mechanical Engineering, Dr. Mahalingam College of Engineering and Technology, Pollachi, India

Abstract

A natural convection solar greenhouse dryer with biomass back-up heater was developed and tested for its performance during summer and winter months under the meteorological conditions of Pollachi, India, using coconuts as drying material. The dryer maintained the temperature between 33°C and 60°C during summer, 26°C and 43°C during winter periods. The biomass heater maintained the temperature inside the dryer between 35°C and 45°C during night. The coconuts were dried from an initial moisture content of 53% to a final moisture content of around 7% in 54 h in summer and 74 h in winter in the solar-biomass hybrid dryer compared to 153 h during summer and 247 h during winter in open sun drying. The thermal efficiency of the solar-biomass hybrid dryer was found to be 24% and 21%, respectively, during summer and winter time. The embodied energy of the dryer is found to be 18,302 kWh and the CO2 emission was 1518 kg per year. The net CO2 mitigation is 678 tonnes and the total carbon credit earned is $18,645. The payback period of the drier was found to be 3.3 years.

Funder

SEED Division, Department of Science and Technology, Govt. of India, New Delhi

Publisher

SAGE Publications

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3