Influence of graphene nanoplatelet on carboxymethyl cellulose for enhanced electrochemical performance

Author:

Islam Muhammad Remanul1ORCID,Nasib Izuan1,Nafiz Syed1,Beg Mohammad Dalour2,Pickering Kim2,Al-Fatihhi Mohd1,Ahmad Yahaya Ahmad Naim1,Bin Safie Sairul Izwan1,Smdani Md. Gulam3

Affiliation:

1. Universiti Kuala Lumpur, Kuala Lumpur, Malaysia

2. The University of Waikato, Hamilton, New Zealand

3. South Dakota School of Mines and Technology, Rapid City, SD, USA

Abstract

Renewable and bio-based polymers are favored over conventional synthetic polymers because of their low-cost, abundance and sustainability, but due to their average electrochemical performance, sometimes their application is limited as battery material. This study investigates the electrochemical properties of nanocomposites composed of carboxymethyl cellulose (CMC) and graphene nanoplatelets (GNP) at varying GNP ratios. Four samples with GNP weight ratios ranging from 0 to 0.33 wt.% were subjected to analysis using electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) spectroscopy. The sample containing 0.33% GNP exhibited the most favorable electrochemical behavior, demonstrating an ionic conductivity of approximately 2.54 × 10−5 S/cm at 25 °C. Cyclic Voltammogram and Nyquist plots indicated an electrochemical process governed by diffusion processes, particularly evident with 0.33% GNP. This sample displayed the highest specific capacitance at 4.290 F/g, representing an 83.07% improvement over the Pure CMC sample, along with a favorable electrochemical window at 375 mV. Bode plot analysis underscored the influence of diffusion and charge transfer on resistance and conductivity, highlighting enhanced ion mobility in this sample. SEM micrographs revealed improved GNP dispersion in the CMC matrix at higher GNP concentrations, enhancing contact. FTIR analysis confirmed effective CMC–GNP interaction, characterized by a specific peak at 1589 cm−1. These findings provide valuable insights into the electrochemical potential of CMC–GNP composites, offering prospects for their application in diverse electrochemical devices.

Funder

UniKL

Publisher

SAGE Publications

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3