Evaluation of the washability characteristics of Khushab coal (Pakistani) by heavy media separation process

Author:

Sana Hafiz1,Kanwal Sumaira1,Akhtar Javaid1,Sheikh Naseer1,Munir Shahid1

Affiliation:

1. Centre for Coal Technology, University of the Punjab, Lahore, Pakistan

Abstract

The use of high-sulfur Pakistani coals can cause serious problems of slagging and fouling in thermochemical conversion reactors along with environmental issues like acid rain, etc. In this study, a pre-combustion technique, namely heavy media separation, is employed for the cleaning of low-grade Pakistani coal. Six crushed coal samples of different particle sizes were individually subjected to heavy media solutions of ZnCl2 of different specific gravities. It was found that the sample with a particle size of −6.25+4 mm at specific gravity of 1.4 produced the optimum float product as clean coal, showing 83.53% yield of clean coal with 1.24% ash and 1.0% sulfur contents. An overall reduction of 91.68% in ash and 86.11% sulfur contents was obtained. Moreover, up to 19.3% enhancement of gross calorific value was achieved. The resultant clean coal can be used in various energy recovery schemes in Pakistan such as coal-fired power plants and cement industries.

Publisher

SAGE Publications

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Characterization and washability of Pakistani bituminous coal from Punjab;Energy Sources, Part A: Recovery, Utilization, and Environmental Effects;2020-10-08

2. Quantitative analysis of coal resources in Qingyang City;IOP Conference Series: Earth and Environmental Science;2020-05-01

3. Designing coal preparation circuit for cleaning high ash and high sulfur Punjab (Pakistan) coal to meet end-user requirements;International Journal of Coal Preparation and Utilization;2020-01-09

4. Upgrading low-rank coals (Çan, Çanakkale/Turkey) by float-sink separation in dense media;Energy Sources, Part A: Recovery, Utilization, and Environmental Effects;2019-03-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3