Affiliation:
1. Institute of Aquatic Science and Technology, College of Hydrosphere, National Kaohsiung University of Science and Technology, Kaohsiung City
2. Centre for Energy and Environmental Sustainability, Lucknow, India
3. Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City
Abstract
This study presents Sargassum duplicatum-derived biochar as an efficient solution for removing heavy metals from various water sources, addressing a critical sustainability need. Achieving a remarkable adsorption efficiency of 617 mg/g within 4 h at pH 5 and 150 rpm, surpassing previous findings, the biochar demonstrates exceptional efficacy. Impressively, it achieves removal efficiencies of 97.56% in tap water and 99.05% in seawater. Investigating various heavy metals, the study reveals differential adsorption and removal efficiencies across different water sources. Utilizing scanning electron microscopy, Fourier-transform infrared spectroscopy, and Brunauer–Emmett–Teller analyses, the study elucidates the biochar's porous structure and significant surface area, enhancing its effectiveness. Notable attributes include low-temperature sensitivity, pH 5 optimization, and excellent fits to Langmuir and Pseudo-second-order kinetics models. This research underscores Sargassum duplicatum-derived biochar as a chemically active material, offering a promising solution to water contamination challenges with innovation and remarkable efficiency.
Funder
Institute for Information Industry, Ministry of Science and Technology, Taiwan
National Kaohsiung University of Science and Technology 113 Annual Marine Characteristics Sustainable Development Research Program
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献