Thermal convective transport energy and environmental applications for magnetised flow with parallel (non-parallel) walls movement simulation of staggered cavity

Author:

Kousar Nabeela1,Bilal S.12,Fatima Nosheen1,Jamshed Wasim3ORCID,Eid Mohamed R.45ORCID

Affiliation:

1. Department of Mathematics, Air University, Islamabad, Pakistan

2. School of Mathematics and Statistics, Central South University, Changsha, PR China

3. Department of Mathematics, Capital University of Science and Technology (CUST), Islamabad, Pakistan

4. Department of Mathematics, Faculty of Science, New Valley University, Al-Wadi Al-Gadid, Egypt

5. Finance and Insurance Department, College of Business Administration, Northern Border University, Arar, Saudi Arabia

Abstract

The liquid suspension's staggered domains affect everyday life engineering. In this way, both parallel/anti-parallel movement of walls of staggered domains complicates formulation, making it difficult for researchers to detect liquid suspension flow field features. The current article is a key effort in this regard. The staggered cavity is equipped with liquid suspension. In a vertical path, a magnetic field is affected externally. To be more precise, we considered three cases for moving the top and bottom walls. In Case-I, just the top wall moves, while the other walls stay still. Case-II has parallel top and bottom walls. Case-III: anti-parallel wall movement. The left wall is chilly, the top wall is adiabatic, and the right side and bottom walls are heated consistently. The continuity, momentum, energy, and boundary constraints equations determine the physical configuration. Finite element analysis discretizes the governing equations. Every contour graphic show velocity, pressure, and temperature with an external magnetic field. Line graphs help describe velocity components. At a finer refinement level, all instances record kinetic energy versus magnetic field parameter and Reynolds number in tabular and bar graphs. Fluid flow length and velocity always decrease with magnetic field parameter. Kinetic energy is reduced with magnetic field intensity.

Publisher

SAGE Publications

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3