Application of biomass fraction at industrial waste incinerator

Author:

Kang Seongmin1ORCID,Kim Seungjin2,Song Garam1,Kim Ki-Hyun3,Jeon Eui-Chan4

Affiliation:

1. Climate Chang Research Center, Sejong University, Seoul, Korea

2. Cooperate Course for Climate Change, Sejong University, Seoul, Korea

3. Department of Civil and Environmental Engineering, Hanyang University, Seoul, Korea

4. Department of Environment & Energy, Sejong University, Seoul, Korea

Abstract

The factor required for estimating greenhouse gas emission, i.e. the fossil carbon fraction, excludes the biomass fraction of incinerated waste and can be applied as a major factor in estimating greenhouse gas emissions. In Korea, the amount of greenhouse gases emitted from waste incineration facilities is calculated by using a solid waste incinerated amount default values (biomass fraction, content of dry matter, etc.) provided by the Intergovernmental Panel on Climate Chang (IPCC). However, this method cannot reflect the characteristics of Korea. This method is likely to overestimate or underestimate the amount of greenhouse gas emissions. This study aims to investigate the difference in emissions between the actual values of the biomass content based on the exhaust gas standard and the IPCC defaults applied in the calculation of the national emissions. The comparative result indicates that the amount of greenhouse gas emissions calculated using the solid waste composition method is 70.71 tons CO2/day and using the flue gas analysis is 56.92 tons CO2/day. This verifies that the former method overestimates the amount of greenhouse gas emissions compared with the latter method. The difference is caused by applying both factors in estimating greenhouse gas emissions and the basic values provided in the IPCC guideline. In addition, although the IPCC reported 10% of biomass content, it is 41.06% as a result of actual analysis, and hence, it is considered that there will be a difference depending on the biomass content. Thus, to increase the reliability of the calculated greenhouse gas emissions, these should be estimated by considering national characteristics.

Publisher

SAGE Publications

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3