Methane emissions from the Algerian natural gas pipelines transportation: Exploring process to reduce environmental consequences

Author:

Louhibi–Bouiri Mounia1,Hachemi Messaoud1

Affiliation:

1. Research Unit Materials, Processes and Environment (UR-MPE), Faculty of Engineering Science, University M'Hamed Bougara of Boumerdes, Boumerdes, Algeria

Abstract

The global environmental community recognizes global warming as one of the major serious threats to the planet. The emissions of methane from natural gas transportation pipeline are an important factor for global warming. While being transported by pipeline, natural gas is often emitted to the atmosphere, either for depressurization (venting emissions) or leak through the pipeline (fugitive emission). Emissions of methane are of particular concern since the methane represents the major component of natural gas and a powerful greenhouse gas. The present study investigates the feasibility of gas venting mitigation, from the Algerian natural gas transportation network with pipeline pump-down technique, prior pipeline maintenance activities. First, we calculate the amount of methane released during venting operation from GZ3 40″ pipeline based on the weighted average pipe diameter and pressure in the pipeline section being repaired. We then estimate quantity of cost value of the gas recovered. We, thereafter, suggest a mobile compressor for saving this gas. The results obtained showed that using pump-down technique with portable compressor solution instead of venting mainly saves 54.873 million m3 of gas with gain net cost saving about 11.628 million USD. Avoiding the release of gas to the atmosphere during venting operations will be crucial to mitigating greenhouse gas emissions. For the developing countries, including Algeria, mitigating these emissions can provide green investments for the joint implementation Kyoto Protocol flexibility mechanism. This will contribute to sustainable development and additional economic benefits through carbon credit revenues and technology transfer from industrialized countries.

Publisher

SAGE Publications

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3