Influence analysis and low carbon evaluation of 3D sand printing process parameters on efficiency, resource consumption, and carbon emission

Author:

Zheng Jun12ORCID,Lin Feng1,Shi Junjie1,Hu Xinyu1,Pan Qi1,Qi Tiening1,Ren Yicheng1,Guan Aizhi1,Zhang Zhiyi1,Ling Wei1

Affiliation:

1. School of Mechanical and Energy Engineering, Zhejiang University of Science and Technology, Hangzhou, China

2. Industrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, USA

Abstract

The 3D sand printing (3DSP) technology provides a richer realization path for the sustainable development of the manufacturing industry. It has the advantages of one-time molding, reducing design constraints and machining amount, and easy control of casting dimensional accuracy. Therefore, studying the impact of process parameters of the printing process on printing efficiency, resource consumption, and carbon emissions is the basis for the sustainable development of 3DSP technology. In this paper, starting from the main influencing parameters such as printing layer thickness, recoater speed, printing angle, and single printing quantity, a relationship model between printing parameters and carbon emission sources is constructed. A total factor carbon emission prediction model of 3DSP process including the impact of capital and labor is established. Build an influence relationship with printing parameters as independent variables and carbon emissions as dependent variables. Taking the sand casting industry as an example to verify the above model, the experimental results show that the thickness of the printing layer has the greatest impact on carbon emissions. When the layer thickness is 0.36 mm, the speed of the recoater is 0.22 m/s, the printing angle is (0°, 0°, 90°), and the single print quantity is 84, the total carbon emission is the lowest and 28.77% less compared to the parameter with the highest carbon emission. The average relative error of the predictive model is 1.929%. The results of this study can provide some new ideas for sustainable development of additive manufacturing technology.

Funder

Natural Science Foundation of Zhejiang Province

National Natural Science Foundation of China

Publisher

SAGE Publications

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3