Evaluating carbon payback time by optimizing insulation materials for different orientations: A cradle-to-gate life cycle assessment

Author:

Gigasari Ali Rafat1ORCID,Cárcel-Carrasco Javier1,Palermo Iglesias Luis Manuel1,Amani Nima2ORCID

Affiliation:

1. Department of Architectural Constructions, Universitat politècnica de valència, València, Spain

2. Department of Civil Engineering, Chalous Branch, Islamic Azad University, Chalous, Iran

Abstract

The European Union aims to reduce greenhouse gases emissions by 80–95% compared to 1990 levels by 2050. Therefore the life cycle concept has gained widespread acceptance as a model for evaluating the environmental impact of goods and services. In this study, the optimal thickness of various insulation materials for external walls, roofs, and floors using a Mediterranean climate zone's hot summers and mild winters for a hypothetical residential building for four cardinal orientations was determined. The criteria for determining the optimum thickness represent a turning point in terms of cooling energy consumption (electricity). The optimum thickness of nine different types of insulation materials was defined using the aforementioned approach. These materials included aerogel, polyisocyanurate, polyurethane, extruded polystyrene, expanded polystyrene, phenolic foam, cellulose fiber (cellulose), mineral wool, and glass wool (GW). The purpose of this paper is to calculate the carbon payback time (CPBT) using the cradle-to-gate life cycle assessment method by considering the global warming potential (GWP) of insulation materials at their optimum thickness. The CPBT is calculated as the ratio of the total building's GWP to the GWP of savings from cooling and heating (electricity and natural gas). The results indicated that when evaluating the average CPBT for four cardinal orientations (FCO), aerogel has the longest CPBT of 2.34 years, and GW has the shortest CPBT of just 0.09 years. Aside from cost payback time, the findings of this study provide a new perspective on selecting appropriate thermal insulation.

Publisher

SAGE Publications

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3