A joint approach for strategic bidding of a microgrid in energy and spinning reserve markets

Author:

Ferruzzi Gabriella1,Graditi Giorgio2,Rossi Federico1

Affiliation:

1. University of Naples, Federico II, Naples, Italy

2. ENEA, Portici, Italy

Abstract

In the electricity market, short-term operation is organized in day-ahead and real-time stages. The two stages that are performed in different time intervals have reciprocal effects on each other. The paper shows the strategy of a microgrid that participates to both day-ahead energy and spinning reserve market. It is supposed that microgrid is managed by a prosumer, a decision maker who manages distributed energy sources, storage units, Information and Communication Technologies (ICT) elements, and loads involved in the grid. The strategy is formulated considering that all decisions about the amount of power to sell in both markets and the price links to the offer, must be taken contextually and at the same time, that is through a joint approach. In order to develop an optimal bidding strategy for energy markets, prosumer implements a nonlinear mixed integer optimization model: in this way, by aggregating and coordinating various distributed energy sources, including renewable energy sources, micro-turbines–electricity power plants, combined heat and power plants, heat production plants (boilers), and energy storage systems, prosumer is able to optimally allocate the capacities for energy and spinning reserve market and maximize its revenues from different markets. Moreover, it is considered that both generators and loads can take part in the reserve market. The demand participation happens through both shiftable and curtailable loads. Case studies based on microgrid with various distributed energy sources demonstrate the market behavior of the prosumer using the proposed bidding model.

Publisher

SAGE Publications

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3