Nanocrystal cellulose from diverse biological sources: Application and innovations

Author:

Nimker Vanshika1,Dong Cheng-Di12ORCID,Patel Anil Kumar13,Chauhan Ajeet Singh1,Chen Chiu-Wen12,Singhania Reeta Rani13ORCID

Affiliation:

1. Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung

2. Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung

3. Centre for Energy and Environmental Sustainability, Lucknow, India

Abstract

Cellulose is the most abundant renewable polymer on Earth which is extensively distributed in diverse ecosystems. It is present in higher plants, marine organisms, and also produced through microbial processes in organisms like algae, fungi, and bacteria. From an industrial perspective, the semicrystalline nature of cellulose present in different plant and microbial sources enables the fabrication of various types of nanocellulose, such as nanofibre and nanocrystals, through mechanical disintegration and chemical methods, respectively. Nanocellulose distinguishes itself as a sustainable, nonharmful, and biodegradable polymer. It will enable sustainable development for responsible consumption and production. Possessing a range of excellent properties, it can be seamlessly integrated into various materials. Research on nanocellulose is gaining momentum in response to current issues related to fossil fuels, including concerns about CO2 emissions, plastic pollution, and the need for renewable energy sources. This review addresses nanocrystals production method from cellulose found in agricultural, microbial sources, and its applications in fields such as materials science, electronics, medicine, and environmental science.

Funder

National Science and Technology Council

Publisher

SAGE Publications

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3