Optimal energy mix for greenhouse gas reduction with renewable energy – The case of the South Korean electricity sector

Author:

Cho Sungheum1,Kim Hana2ORCID,Lee Sanghoon3,Kim Sangil4,Jeon Eui-Chan5

Affiliation:

1. Climate Chang Research Center, Sejong University, Seoul, South Korea

2. Corporate Course for Climate Change, Sejong University, Seoul, South Korea

3. New & Renewable Energy Center, Korea Energy Agency, Yongin, South Korea

4. Korea Power Exchange, Naju, South Korea

5. Department of Environment & Energy, Sejong University, Seoul, South Korea

Abstract

The power generation sector is one of the largest sources of greenhouse gas emissions in South Korea. Reducing greenhouse gas emissions in this sector is therefore of crucial importance. The government has recently released its core energy policy objectives: elimination of coal-fired power generation, phase-out of nuclear plants, and promotion of renewable energy sources. This energy policy should be consistent with the national climate change response policy. This paper analyzed the optimum power generation structure based on the South Korean government’s energy policy and climate change policy and then analyzed the optimum power generation structure if the greenhouse gas reduction and renewable energy targets were different. Seven scenarios with different 2030 greenhouse gas reduction and renewable energy generation targets were investigated. The scenario analysis shows that it is difficult to reduce dependence on coal power generation if the South Korean government’s current energy and climate change policies are maintained. The current greenhouse gas reduction target level is insufficient to be a driving force for energy transition, but dependence on coal power generation can be reduced by applying a deeper level of greenhouse gas reduction (e.g. 50% reduction compared to BAU). To achieve the energy transition planned by the South Korean government, it would be necessary to set a target for greenhouse gas reduction that is deeper than the current plan. The results of this study analyzing the optimal power configuration for 2030 in light of South Korea’s energy and climate change policies are expected to contribute to the South Korean government’s establishment of policies in the future.

Funder

Ministry of Environment

Publisher

SAGE Publications

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3