Analysis of generation cost changes during China’s energy transition

Author:

Qiang Wenli1,Niu Shuwen12,Liu Xiaojie3,Wang Xiang1,Jia Zhuo12,Dai Runqi1

Affiliation:

1. College of Earth and Environmental Sciences, Lanzhou University, Lanzhou, China

2. Key Laboratory of Western China’s Environme tal Systems (Ministry of Education), Lanzhou University, Lanzhou, China

3. Institute of Geographic Sciences and Natural Resources Research (IGSNRR), Chinese Academy of Sciences, Beijing, China

Abstract

How to cut down power generation cost is an important issue during energy system transformation. This study examines the pathway of China’s coal-fired and clean power’s unit generation cost changes during 2007–2015 and predicts the change trends of each type of power between 2016 and 2025. The results show that the cost of coal-fired power will increase to 0.50–0.73 Yuan/kWh in 2025 because of the stricter environmental regulations and the establishment of a nationwide carbon emission trading market. Conversely, the cost of clean energy power, with the exception of hydropower, shows a decreasing trend between 2007 and 2025, with the costs of nuclear power, solar power, and wind power declining from 0.40, 4.34, and 0.56 Yuan/kWh to 0.33, 0.31, and 0.49 Yuan/kWh, respectively. However, the cost of hydropower displays an increasing trend from 0.22 to 0.26 Yuan/kWh during 2007–2025 due to increases in construction costs. Considering the external cost increases applying to coal-fired power and the declining trend caused by the learning rates of renewable power, the cost of all the clean energy power will be lower than the costs of coal-fired power before 2025. The cost sharing of coal-fired power is also analyzed in this study. However, there are a number of relevant economic and policy measures that are needed to be taken by the government to fulfill this transformation.

Publisher

SAGE Publications

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3