Thermal performance assessment of a cylindrical box solar cooker fitted with decahedron outer reflector

Author:

Anilkumar B C1,Maniyeri Ranjith1ORCID,Anish S1

Affiliation:

1. Department of Mechanical Engineering, National Institute of Technology Karnataka (NITK), Mangalore, India

Abstract

One of the important issues humankind globally faces in recent years is the scarcity of non-renewable energy resources. Solar energy is considered safe and renewable, which can fulfil the demand and supply chain requirements. Solar box cookers (SBCs) are popular in domestic cooking due to their ease of use and handling. The prime objective of the present work is to develop and test the performance of a cylindrical SBC fitted with decahedron-shaped reflector (CSBC-FDR). The CSBC is designed using minimum entropy generation (MEG) method. Through experiments, we observed that absorber plate attains peak temperature of about 138°C–150°C with the aid of decahedron reflector. The first figure of merit (F1) is found to be 0.13, indicating better optical efficiency and low heat loss coefficient for the SBC. The second figure of merit (F2) is obtained as 0.39, which indicates good heat exchange efficiency (F') and less heat capacity for cooker's interior. The average energy efficiency, exergy efficiency, and standardized cooking power values are 21.93%, 3.04%, and 25.28W, respectively. These results show that the present CSBC-FDR is able to cook food in a shorter period with better efficiency. The experimental and numerical values of overall heat loss coefficient of the developed SBC are in close agreement. The experimentally assessed performance parameters reveal superior performance of the present cylindrical SBC in comparison with many conventional rectangular and trapezoidal box solar cookers.

Publisher

SAGE Publications

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Environmental Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3