Simple indicators of crime and police: How big data can be used to reveal temporal patterns

Author:

Dau Philipp M.1ORCID,Dewinter Maite2,Witlox Frank3,Beken Tom Vander1,Vandeviver Christophe1ORCID

Affiliation:

1. Department of Criminology, Criminal Law and Social Law, Ghent University, Belgium

2. Department of Geography, Ghent University, Belgium

3. Department of Geography, Ghent University, Belgium Department of Geography, University of Tartu, Estonia College of Civil Aviation, Nanjing University of Aeronautics and Astronautics, China

Abstract

This study demonstrates how temporal summary statistics can be a guiding tool for big data analyses to unravel temporal patterns of crime and police presence. Simple indicator statistics were used to identify temporal clusters of crimes and police presence, and to investigate potential links between the two. The methodology was applied on an anonymized police database, including reported crime events and police presence data, from a medium-sized European police department. The results illustrated that certain crime types occurred more during the day (e.g., burglaries), while others were more prevalent at night (e.g., drug crimes, motorbike and car theft). Police presence showed dispersed temporal patterns and little temporal focus on any type of crime. The research shows that temporal summary statistics can be used to support an explorative analysis of big datasets and guide subsequent spatiotemporal analyses of crime and police data. The summary statistics offer an accessible approach to analysing extensive datasets of policing activity and improving evidence-based policing strategies.

Funder

Bijzonder Onderzoeksfonds

Fonds Wetenschappelijk Onderzoek

Eesti Teadusagentuur

Publisher

SAGE Publications

Subject

Law

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3