Linear Models with Spatially Distributed Data

Author:

Doreian Patrick1

Affiliation:

1. University of Pittsburgh

Abstract

This article deals with linear models for which data have been aggregated over well-defined geographic areas. Such data may be generated by spatial processes, and these may be represented in the form of spatial autocorrelation in the disturbance term or directly in the form of a spatial effect. This article details the derivation of Ord's (1975) MLEprocedurefor the spatial disturbances model and contrasts it with this MLE procedure for the spatial effects model. These alternative model specifications and estimation procedures are then illustrated by a variety of examples. These MLEprocedures for the spatial models are also contrasted with conventional regression procedures (which ignored geographical space). If there is spatial autocorrelation present, an MLE procedure is preferable.

Publisher

SAGE Publications

Subject

Sociology and Political Science,Social Sciences (miscellaneous)

Reference20 articles.

1. Alternative Approaches to Spatial Autocorrelation: An Improvement Over Current Practice

2. Capecchi, V. and G. Galli (1969) "Determinants of voting behavior in Italy: a linear causal model of analysis," pp. 235-283 in M. Dogan and S. Rokkan (eds.) Social Ecology . Cambridge, MA: MIT Press.

3. The Market, Tradition and Peasant Rebellion: The Case of Romania in 1907

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3