Combining Multiple Organizational-level Databases: An Empirical Evaluation of Different Matching Methods

Author:

de Leeuw Tim1ORCID,Keijl Steffen2

Affiliation:

1. TIAS School for Business and Society, Tilburg University, the Netherlands

2. FH Campus Wien, University of Applied Sciences, Wien, Austria

Abstract

Although multiple organizational-level databases are frequently combined into one data set, there is no overview of the matching methods (MMs) that are utilized because the vast majority of studies does not report how this was done. Furthermore, it is unclear what the differences are between the utilized methods, and it is unclear whether research findings might be influenced by the utilized method. This article describes four commonly used methods for matching databases and potential issues. An empirical comparison of those methods used to combine regularly used organizational-level databases reveals large differences in the number of observations obtained. Furthermore, empirical analyses of these different methods reveal that several of them produce both systematic and random errors. These errors can result in erroneous estimations of regression coefficients in terms of direction and/or size as well as an issue where truly significant relationships might be found to be insignificant. This shows that research findings can be influenced by the MM used, which would argue in favor of the establishment of a preferred method as well as more transparency on the utilized method in future studies. This article provides insight into the matching process and methods, suggests a preferred method, and should aid researchers, reviewers, and editors with both combining multiple databases and describing and assessing them.

Publisher

SAGE Publications

Subject

Sociology and Political Science,Social Sciences (miscellaneous)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3