Affiliation:
1. University of California, Santa Barbara
Abstract
This article develops several multidimensional multilinear association models for sociologists and other social science researchers to analyze the relationship between categorical variables in multiway cross-classification tables. The proposed multilinear approach not only provides satisfactory fit by conventional standards in the illustrative examples but also offers better understanding of the complex relationship between variables. This study highlights the relationship between two alternative decompositions in the multilinear framework—the PARAFAC/CANDECOMP and the Tucker 3-mode methods to decompose log-linear parameters—as well as the relationship between the multilinear approach and the log-multiplicative association models developed by Goodman and others. In addition, the author discusses empirical strategies to determine whether some or all cross-dimensional and other identifying restrictions can be relaxed in certain restricted models and to account for the proper degrees of freedom for these models.
Subject
Sociology and Political Science,Social Sciences (miscellaneous)
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献