Affiliation:
1. Department of Mathematics, Texas A&M University–Kingsville, TX, USA
Abstract
In carrying out surveys involving sensitive characteristics, randomized response models have been considered among the best techniques since they provide the maximum privacy protection to the respondents and procure honest responses. Over the years, researchers have carried out studies on the estimation of proportions of the population possessing sensitive characteristics. However, there is a paucity of research studies that have addressed higher order interactions between these sensitive characters. In this article, we develop a new theory based on three proposed randomized response models which we name as: simple model, semi-crossed model, and fully crossed model. Twenty-one new unbiased estimators of seven parameters are introduced, their variance expressions are derived, and unbiased estimators of variances are developed. The three models are compared under various values of the parameters by computing the percent relative efficiency of one model over another model. The most efficient model is then applied to study the population proportions of three varieties of smoking habits among students, and their first- and second-order interactions. The last four sections (Ninth to Twelfth) are verifications of theoretical results using the Cramer–Rao lower bounds of variances for the developed 21 new estimators in randomized response sampling.
Subject
Sociology and Political Science,Social Sciences (miscellaneous)
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献