A New Mixture Model for Misclassification With Applications for Survey Data

Author:

Cheng Simon1,Yingmei Xi 2,Chen Ming-Hui2

Affiliation:

1. University of Connecticut, Storrs,

2. University of Connecticut, Storrs

Abstract

Social scientists often rely on survey data to examine group differences. A problem with survey data is the potential misclassification of group membership due to poorly trained interviewers, inconsistent responses, or errors in marking questions. In data containing unequal subsample sizes, the consequences of misclassification can be considerable, especially for groups with small sample sizes. In this study, the authors develop a new mixture model that allows researchers to address the problem using the data they have. By supplying additional information from the data, this two-stage model is estimated using a Bayesian method. The method is illustrated with the Early Childhood Longitudinal Study data. As anticipated, the more information supplied to adjust for group membership, the better the model performs. Even when small amounts of information are supplied, the model produces reasonably robust estimates and improves the fit compared to the no-adjustment model. Sensitivity analyses are conducted on choices of priors.

Publisher

SAGE Publications

Subject

Sociology and Political Science,Social Sciences (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3