How Many Imputations Do You Need? A Two-stage Calculation Using a Quadratic Rule

Author:

von Hippel Paul T.1

Affiliation:

1. University of Texas, Austin, TX, USA

Abstract

When using multiple imputation, users often want to know how many imputations they need. An old answer is that 2–10 imputations usually suffice, but this recommendation only addresses the efficiency of point estimates. You may need more imputations if, in addition to efficient point estimates, you also want standard error ( SE) estimates that would not change (much) if you imputed the data again. For replicable SE estimates, the required number of imputations increases quadratically with the fraction of missing information (not linearly, as previous studies have suggested). I recommend a two-stage procedure in which you conduct a pilot analysis using a small-to-moderate number of imputations, then use the results to calculate the number of imputations that are needed for a final analysis whose SE estimates will have the desired level of replicability. I implement the two-stage procedure using a new SAS macro called %mi_combine and a new Stata command called how_many_imputations.

Publisher

SAGE Publications

Subject

Sociology and Political Science,Social Sciences (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3