The Logit Model and Response-Based Samples

Author:

XIE YU1,MANSKI CHARLES F.1

Affiliation:

1. University of Wisconsin—Madison

Abstract

It is well-known that, under the logit model for binary response, the random sampling and response-based sampling maximum likelihood estimators coincide for all parameters except the intercept. Citing this coincidence, many researchers have assumed the logit model and analyzed data from response-based samples as if those data were obtained by random sampling. We argue that this practice should be avoided unless the researcher really believes the logit specification. One preferable alternative is the weighted maximum likelihood estimator of Manski and Lerman (1977). Random sampling maximum likelihood analysis does not have a natural interpretation when the true response function is not logit. Weighted maximum likelihood analysis estimates a constrained best predictor of the binary response and so remains interpretable.

Publisher

SAGE Publications

Subject

Sociology and Political Science,Social Sciences (miscellaneous)

Cited by 68 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3