Model Adequacy Checking/Goodness-of-fit Testing for Behavior in Joint Dynamic Network/Behavior Models, with an Extension to Two-mode Networks

Author:

Wang Cheng12ORCID,Butts Carter T.3,Hipp John3,Lakon Cynthia M.3

Affiliation:

1. Cornell University, Ithaca, NY, USA

2. Wayne State University, Detroit, MI, USA

3. University of California, Irvine, CA, USA

Abstract

The recent popularity of models that capture the dynamic coevolution of both network structure and behavior has driven the need for summary indices to assess the adequacy of these models to reproduce dynamic properties of scientific or practical importance. Whereas there are several existing indices for assessing the ability of the model to reproduce network structure over time, to date there are few indices for assessing the ability of the model to reproduce individuals’ behavior patterns. Drawing on the widely used strategy of assessing model adequacy by comparing index values summarizing features of the observed data to the distribution of those index values on simulated data from the fitted model, we propose four goals that a researcher could reasonably expect of a joint structure/behavior model regarding how well it captures behavior and describe indices for assessing each of these. These reasonably simple and easily implemented indices can be used for assessing model adequacy with any dynamic network models jointly working with networks and behavior, including the stochastic actor-based models implemented within software packages such as RSien version 1.2-24. We demonstrate the use of our indices with an empirical example to show how they can be employed in practical settings, with an additional extension to modeling affiliation dynamics in two-mode networks. Key scripts are provided in the Supplemental Document (which can be found at http://smr.sagepub.com/supplemental/ ).

Publisher

SAGE Publications

Subject

Sociology and Political Science,Social Sciences (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3