Curating Training Data for Reliable Large-Scale Visual Data Analysis: Lessons from Identifying Trash in Street View Imagery

Author:

Hwang Jackelyn1ORCID,Dahir Nima1ORCID,Sarukkai Mayuka2,Wright Gabby3

Affiliation:

1. Department of Sociology, Stanford University, Stanford, California, USA

2. Department of Management Science and Engineering, Stanford University, Stanford, California, USA

3. Department of Computer Science, Stanford University, Stanford, California, USA

Abstract

Visual data have dramatically increased in quantity in the digital age, presenting new opportunities for social science research. However, the extensive time and labor costs to process and analyze these data with existing approaches limit their use. Computer vision methods hold promise but often require large and nonexistent training data to identify sociologically relevant variables. We present a cost-efficient method for curating training data that utilizes simple tasks and pairwise comparisons to interpret and analyze visual data at scale using computer vision. We apply our approach to the detection of trash levels across space and over time in millions of street-level images in three physically distinct US cities. By comparing to ratings produced in a controlled setting and utilizing computational methods, we demonstrate generally high reliability in the method and identify sources that limit it. Altogether, this approach expands how visual data can be used at a large scale in sociology.

Funder

Institute for Human-Centered AI at Stanford

UPS Endowment Fund at Stanford

National Science Foundation

Institute for Research in the Social Sciences at Stanford

Stanford Data Science Initiative

Publisher

SAGE Publications

Subject

Sociology and Political Science,Social Sciences (miscellaneous)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Start Generating: Harnessing Generative Artificial Intelligence for Sociological Research;Socius: Sociological Research for a Dynamic World;2024-01

2. Cleaning Up the Neighborhood: White Influx and Differential Requests for Services;Socius: Sociological Research for a Dynamic World;2024-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3