Prediction and Classification with Neural Network Models

Author:

ZENG LANGCHE1

Affiliation:

1. George Washington University

Abstract

This article compares neural network models to the logit and probit models, the most widely used choice models in current empirical research, and explores the application of neural network models to social science choice/classification problems. Social and political relationships are generally characterized by nonlinearity and complexity and are usually of unknown functional forms. The logit and probit models assume exact and, in general, linear functional forms for the utility functions underlying the observed categorical data. Neural network models, on the other hand, are capable of approximating arbitrary functional forms under general conditions and can handle rich patterns of nonlinearity in the utility functions. They are therefore potentially better suited to typical social science data than the logit and probit models, which are shown to be special cases of the neural network class. Simulation results show that the neural network models perform significantly better than the logit models and are indistinguishable from the “true” models.

Publisher

SAGE Publications

Subject

Sociology and Political Science,Social Sciences (miscellaneous)

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Past as a Stochastic Process;Journal of Computer Applications in Archaeology;2024

2. Interaction Models;Methodological Tools;2023-10-31

3. Neural Networks and Political Science: Testing the Methodological Frontiers;Empiria. Revista de metodología de ciencias sociales;2023-01-09

4. Differentiating Crohn’s disease from intestinal tuberculosis using a fusion correlation neural network;Knowledge-Based Systems;2022-05

5. Ontology, neural networks, and the social sciences;Synthese;2020-12-28

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3