A Primer on Deep Learning for Causal Inference

Author:

Koch Bernard J.12ORCID,Sainburg Tim3,Geraldo Bastías Pablo4,Jiang Song5,Sun Yizhou5,Foster Jacob G.6789ORCID

Affiliation:

1. Northwestern Kellogg School of Management, Center for Science of Science and Innovation, Evanston, IL, USA

2. Department of Sociology, University of Chicago, Chicago, IL, USA

3. Department of Neurology, Harvard Medical School, Boston, MA, USA

4. University of Oxford, Nuffield College, Oxford, UK

5. UCLA Department of Computer Science, Los Angeles, CA, USA

6. Cognitive Science Program, Indiana University-Bloomington, Bloomington, IN, USA

7. Luddy School of Informatics, Computing, and Engineering, Department of Informatics, Indiana University, IN, USA

8. UCLA Department of Sociology, Los Angeles, CA, USA

9. Santa Fe Institute, NM, USA

Abstract

This primer systematizes the emerging literature on causal inference using deep neural networks under the potential outcomes framework. It provides an intuitive introduction to building and optimizing custom deep learning models and shows how to adapt them to estimate/predict heterogeneous treatment effects. It also discusses ongoing work to extend causal inference to settings where confounding is nonlinear, time-varying, or encoded in text, networks, and images. To maximize accessibility, we also introduce prerequisite concepts from causal inference and deep learning. The primer differs from other treatments of deep learning and causal inference in its sharp focus on observational causal estimation, its extended exposition of key algorithms, and its detailed tutorials for implementing, training, and selecting among deep estimators in TensorFlow 2 and PyTorch.

Funder

Agencia Nacional de Investigación y Desarrollo

National Science Foundation

Publisher

SAGE Publications

Reference90 articles.

1. Alaa Ahmed, Van Der Schaar Mihaela. 2019. “Validating Causal Inference Models via Influence Functions.” In International Conference on Machine Learning, volume 36, pp. 191–201. Association for Computing Machinery.

2. Permutation importance: a corrected feature importance measure

3. Deep-Treat: Learning Optimal Personalized Treatments From Observational Data Using Neural Networks

4. Recursive partitioning for heterogeneous causal effects

5. An Introduction to Propensity Score Methods for Reducing the Effects of Confounding in Observational Studies

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3